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We theoretically investigate charged collective modes in a two-dimensional conductor with hot electrons
where the instantaneous mode frequencies gradually increase or decrease with time. We show that the loss
compensation or even amplification of the modes may occur. We apply our theory to two types of collective
modes in graphene, the plasmons and the energy waves, which can be probed in optical pump-probe
experiments.
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Introduction.—Plasmons in metals, semiconductors,
and other solid-state systems have been a topic of
intensive research for over half a century [1]. Plasmonics
has found a number of technological applications in
chemical sensing, light manipulation, and information
processing. Photoexcitation by ultrashort laser pulses [2–4]
is one of the methods to generate plasmons. When the
pulsed excitation is of high enough power, it can modify
material properties of either the plasmonic medium or its
electromagnetic environment, which is the principle under-
lying the emerging field of active plasmonics [2,5–7].
For example, photoexcitation-induced population inversion
may permit plasmon loss compensation or amplification
[5,6]. More often, plasmon lifetime remains quite short,
e.g., tens of femtoseconds (fs) in noble metals, which is
an obstacle to applications. In experiments using ultrafast
optical pulses, the plasmon frequency changes with time as
the system relaxes back to equilibrium. However, because
of high damping, it has been customary to treat plasmonic
response of the system as quasistationary during the
plasmon lifetime.
Recently, graphene has emerged as a new plasmonic

medium distinguished by record-high tunability and con-
finement [8,9]. Combating damping remains a challenge;
however, plasmon quality factors as high as Q ∼ 30 have
been demonstrated [4,10] for graphene encapsulated in
hexagonal boron nitride. A new scientific frontier in
graphene plasmonics is nonlinear [11,12] and nonequili-
brium dynamics probed in ultrafast optical experiments
[13,14]. Plasmon amplification through stimulated emis-
sion [15,16] has been proposed theoretically and plasmon
switching by optical pumping has been demonstrated
experimentally [4].
These encouraging developments motivate us to study

the regime where the plasmon lifetime is comparable or
longer than the characteristic relaxation time in a material.
Although this regime may or may not be realizable in
graphene, we consider this as a theoretical possibility.
Previously, collective modes in media undergoing adiabatic

evolution have been discussed in theoretical astrophysics
[17], plasma physics [18], and general relativity [19]. In
this Letter, we apply similar ideas to solid-state materials,
which are better suited for controlled experiments. Our key
finding is that loss compensation or even amplification can
be a natural outcome of the transient plasmon dynamics.
Additionally, we show that the same concept applies to the
energy wave in graphene [20,21], which is a collective
mode similar to acoustic plasmons (or “demons” [1]) in
metals and semiconductors [22–24] and also to “cosmic
sound” in the early universe [25].
Qualitative picture.—To model a nonequilibrium system

under intense photoexcitation we assume that its electron
temperature T is much larger than the lattice temperature
Tl. Such a hot-electron state typically forms in metals and
semiconductors a few tens of fs after optical pumping. This
rapid thermalization (that is, relaxation of the electron
distribution to the Fermi-Dirac form with the temperature
T) is due to strong interactions of electrons with each
other and with optical phonons. Subsequently, T gradually
decreases toward Tl at a much slower “cooling” rate
measured in picoseconds (ps), predominantly due to
emission of acoustic phonons. If the plasmon dispersion
depends on T, plasmons propagating in this transient state
would have a slowly changing frequency, i.e., the plasmons
would be chirped. We will show that such an adiabatic
change of the plasmon frequency could induce adiabatic
amplification of the plasmon amplitude.
Adiabatic change of parameters has been previously

considered in the context of plasmon-polariton focusing
in tapered waveguides [26]. As plasmon approaches the
narrow end of the waveguide, its group velocity decreases
and its electric field increases. In this situation the change
of parameters occurs in space. The mechanism we study
relies instead on having parameters changing in time. To
explain our key idea let us treat the plasmon as a harmonic
oscillator with the equation of motion

ð∂2
t þ γðtÞ∂t þ ω2ðtÞÞX ¼ 0 ð1Þ
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for its canonical coordinate XðtÞ (e.g., charge density).
Here γðtÞ is the damping rate and ωðtÞ is the instantaneous
mode frequency. SupposeωðtÞ changes monotonically with
the decay rate κ≡ −∂t lnω, which is slow enough, ω ≫ κ,
then the Wentzel-Kramers-Brillouin (WKB) approximation
to the solution of Eq. (1) is valid:

XðtÞ ¼ AðtÞe−iSðtÞ; ð2Þ

AðtÞ ¼ 1ffiffiffiffiffiffiffiffiffi
ωðtÞp exp

�
−
1

2

Z
t

0

γðt0Þdt0
�
; ð3Þ

SðtÞ ¼
Z

t

0

ωðt0Þdt0: ð4Þ

If both γ and κ are constant, the time-dependent plasmon
amplitude has the form

AðtÞ ¼ e
1
2
ðκ−γÞt: ð5Þ

Clearly, the frequency decay rate κ competes with the
damping rate γ. If the condition κ > γ is met, then the
oscillation amplitude increases with time, as shown in
Figs. 1(a) and 1(b).
Although the adiabatic principle appears simple and

straightforward, its application to actual solid-state systems
may require sorting out some important details. In the
remainder of this Letter we do so on the examples of two
types of collective modes: the plasmons and the energy
waves in graphene.
Plasmons in two-dimensional (2D) materials.—2D

materials are very promising for active plasmonics because
they are not affected by a finite penetration length of optical
beams and are much more tunable than bulk metals. It is
well known [27–29] that such plasmons have a character-
istic square-root dispersion with momentum (Fig. 2),

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=ϵÞDq

p
where ϵ is the permittivity of the

environment and D is the Drude weight (see below).
Our goal is to show that the time dependence of D may
give rise to adiabatic amplification of plasmons.
If the system has the spatial translational symmetry,

different momenta are decoupled. For a given q, in the
linear-response regime, the plasmon dynamics is deter-
mined by the electrical conductivity operator with the
kernel σqðt; t0Þ. Consider the following model for the
conductivity kernel:

σqðt; t0Þ ¼
1

π
DðtÞe−Γðt−t0Þθðt − t0Þ; ð6Þ

DðtÞ ¼ Dð0Þe−2
R

t

0
κðt0Þdt0 : ð7Þ

This model is motivated by a popular physical picture
(see, for example, Ref. [35]) where the current damping
occurs because the “density of photoexcited carriers”
decays with the rate 2κ and because, additionally, these
carriers experience momentum relaxation with the rate Γ;
see [36] for further discussion.
Let us focus for now on the case of undoped graphene

where the Drude weightDðtÞ is proportional to the electron
temperature [30] DðtÞ ¼ 2 ln 2ðe2=ℏ2ÞTðtÞ and where
the underdamped plasmons exist at frequencies
τ−1ee ≪ ω ≪ T=ℏ. The lower limit is set by the electron-
electron scattering rate τ−1ee ; the upper limit is imposed by
the Landau damping due to the interband transitions; see
Fig. 2. In particular, the dimensionless Landau damping
rate of the thermal plasmons is given by [34]
Γ=ω ¼ ðπ=16 ln 2Þðℏω=TÞ2, which is small if ℏω ≪ T.
Note also that the assumption of scalar D can be justified
if κ and γ are much smaller than the electron-electron

(a) (b)

(c)

FIG. 1. (a) A schematic showing the amplitude of a plasmon as
a function of time t for different relations between the mode
frequency decay rate κ and the damping rate γ. (b) The canonical
coordinate X as a function of t in the κ > γ case. The amplitude
grows as the frequency drops (a down-chirp). (c) XðtÞ for the case
where amplification occurs while frequency increases (an up-
chirp), as in the tunneling process sketched in Fig. 3(a) below.

FIG. 2. Dispersion of the plasmon [30] and the energy
wave [20,21,31] in a weakly doped graphene with hot electrons
(schematically). The plasmon (energy wave) exists at ω above
(below) τ−1ee ; otherwise, it is overdamped, as indicated by the
fainting ends of the curves. For T ≫ μ and α ≪ 1, τ−1ee ¼ aα2T
with α ¼ e2=ϵℏvF and a ∼ 4 [21,32–34]. The plasmon is also
overdamped at ω≳ T=ℏ, while the energy wave is damped
by electron-phonon and disorder scattering characterized by the
rate τ−1ph.
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relaxation rate τ−1ee so that an isotropic electron distribution
(in the absence of a probe) is maintained.
It is straightforward to show that the equation of motion

for the plasmon has the same form as Eq. (1) with X equal
to ρq, the Fourier harmonic of the charge density, and with
the dissipation rate equal to

γ ¼ 2κ þ Γ: ð8Þ

Unfortunately, the condition κ > γ seems impossible to
satisfy since Γ > 0 and κ > 0. In other words, the ampli-
fication of down-chirped plasmons cannot occur due to the
plasmon damping rate being larger than the frequency
decay rate; see also the Supplemental Material [37].
Suppose, however, that the Drude weight is growing,

κ < 0. In this case (an up-chirped plasmon) the criterion
for amplification κ < −Γ can be met if the growth rate is
fast enough; see Fig. 2(c). Under what conditions can this
scenario be realized? One possibility is to leverage the
dependence of the Drude weight on the carrier density or
effective mass, which is another common attribute of
ultrafast pump-probe experiments [2,7]. We speculate that
the plasmon amplification may be possible by exploiting
tunneling in a vertical semiconductor-insulator-graphene
heterostructure; see Fig. 3(a). The semiconductor
could be, e.g., a transition-metal dichalcogenide and the
inslulator could be hexagonal boron nitride (hBN), as in
recent experiments [41]. With a suitable bias voltage
applied, the initial state with a lower electrochemical
potential in graphene can be maintained as the insulator
band gap would prevent electron tunneling in any direc-
tion. However, once they are heated to energies close or
above the insulator’s band edge, the electrons in the
semiconductor layer would tunnel to graphene. (This is
similar to a hot-electron doping effect [42] whereas in [41]

the tunneling was in the opposite direction.) For tunneling
to be rapid the insulator must be thin, which implies
that the charges and current in the two layers would also
be coupled electromagnetically. Therefore, the plasmons
are the modes of the combined system. If the effective
carrier mass in the semiconductor is larger than that in
graphene, then the initial Drude weight is low but as a
result of tunneling, the combined Drude weight of the
carriers in the system (and hence, the electric current)
would increase. The upper limit for the amplification
factor can be estimated by completely neglecting the
damping, Γ → 0, in the expression for the charge density
amplitude

ρqðtÞ ∝ e−
1
2
ðκþΓÞt; κ < 0: ð9Þ

The amplification is proportional to the square root of the
plasmon frequency, or the fourth root of the Drude weight.
If the increase of the latter comes from the decrease of
the effective mass by, say, a factor of 2, then plasmon
amplification by as much as ∼20% may be possible.
For more elaborate estimates, the carrier dynamics beyond
the simple Drude approximation would need to be
included in the model (see, for example, Ref. [43] and
the theory references cited therein).
The tunneling time of hot electrons across ultrathin hBN

layers can be as short as 7 fs [44], which would correspond
to κ perhaps as high as several tens of ps−1. In comparison,
the damping rate in hBN-encapsulated graphene was found
to be Γ ∼ 2 and 20 ps−1 before and after the optical pump,
respectively [4]. Hence, fulfilling the condition κ > γ may
be feasible. Since the semiconductor would partially absorb
the pump pulse, graphene may remain relatively cool,
which may help reduce the plasmon damping due to
electron-phonon scattering [10].
Experimental investigation of the frequency, amplitude,

and spatial interference patterns of the amplified plasmons
as a function of time may be possible by far- and near-field
pump-probe optical techniques [2,4,9].
Energy wave (demon) in graphene.—Our second

example of a collective mode that may exhibit adiabatic
amplification is the energy wave in graphene. This mode is
predicted [20,21,31] to exist in the hydrodynamic regime
of frequencies that are lower than the electron-electron
collision rate τ−1ee ; see Fig. 2. In this regime, only collective
variables immune to interparticle collisions, i.e, the
zero modes of the collision integral, are important: the
local temperature TðrÞ, chemical potential μðrÞ, and drift
velocity uðrÞ. Their dynamics is described by a set of
hydrodynamic equations [21,33,36]. The energy wave is
the propagating longitudinal mode resulting from this set
of equations. Consider a weakly doped graphene, μ ≪ T.
The dispersion relation of the energy wave, neglecting
dissipation, is

(a) (b)

(c)

FIG. 3. (a) Sketch of the heterostructure made of parallel
ultrathin layers of semiconductor (SC), insulator, and graphene
(G) where plasmon amplification can occur when hot electrons
tunnel from the semiconductor to graphene. (b) A qualitative
change of the plasmon dispersion during the tunneling. (c) A
qualitative change of the demon dispersion with increasing
temperature.
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ωq ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
q2 þ 4π

3

e2

ϵ

n2

nE
q

s
; ð10Þ

where n is the average electron density and nE ≡ hεi is the
average kinetic energy density (relative to the zero-doping,
zero-temperature state). The latter behaves as [36]nE ∝ T3 in
the regime we consider, T ≫ jμj. For q ≫ ðe2=ϵÞðn2=nEÞ≡
qc, the dispersion of Eq. (10) approaches ω ¼ ð1= ffiffiffi

2
p ÞvFq.

This collective mode is neutral because electrons and holes
oscillate in phase. It is similar to acoustic plasmons observed
in semiconductors [23,24]. Incidentally, the plasmons in
Ref. [45]were referred to as acoustic because their dispersion
was changed from the square-root to a linear one due to
screening by a nearby gate. This is unlike the original
meaning of the term acoustic plasmon (or “demon”) intro-
duced for a systemwhere the screening is by electrons from a
different band of the same material [1].
For q ≪ qc, the second term in the square root of

Eq. (10) dominates, so ωq ∝
ffiffiffi
q

p
. In this case the energy

wave is no longer neutral: it involves both energy and
charge density oscillations. However, it is different from the
plasmon. First, the energy wave is in the hydrodynamic
regime ω ≪ τ−1ee while the plasmon is in the high frequency
regime ω ≫ τ−1ee . (In practice, the range of admissible q is
also limited from below by the inverse mean-free path lph
due to electron-phonon and disorder scattering; see Fig. 2.)
Second, the frequency of the plasmon increases with
electron temperature T [similar to what is shown in
Fig. 3(b)] while that of the demons decreases [Fig. 3(c)].
We will focus on the small q region of the energy wave
where its frequency can be efficiently controlled by T.
For μ ∼ 40 meV ≈ 500 K and T ¼ 3000 K, which is the
regime probed in a recent experiment [4], the wavelength
corresponding to momentum qc is about 1 μm. The change
of temperature causes the change of the energy density nE,
which in turn affects the frequency of the energy wave
through Eq. (10). We assume that this change is adiabatic,
in other words, that the decay rate κ ¼ − 1

2
∂t ln nE is a

small parameter. Keeping only the leading terms in the
hydrodynamic equations, we get the WKB solutions for the
charge density nq and the energy density [36]

nqðtÞ ∝ ½nEðtÞ�−1=4e−iSðtÞ; ð11Þ
nEqðtÞ ∝ ½nEðtÞ�3=4e−iSðtÞ; ð12Þ

with SðtÞ given by Eq. (4). Therefore, if we want to increase
the energy density oscillations, we need to increase the
average energy densitynE; in otherwords,weneed to heat up
graphene. This can be done using, for example, a moderate
intensity laser source that heats the sample faster than the
characteristic time τph of electron scattering by phonons and
disorder.According toEq. (12), the naive upper bound for the
amplification factor (neglecting any damping) is ðT=TlÞ9=4
whereT is the electron temperature after the photoexcitation.
The amplification is only possible if graphene is slightly

doped, in which case the energy mode is not purely neutral.
Hence, it can also be probed by optical pump-probe
spectroscopy, at THz frequencies. Alternatively, it may be
possible to exploit coupling of this mode to phonons and
probe it by inelastic light scattering, similar to acoustic
plasmons in semiconductors [23,24].
Three-temperature state.—A solid-state system exhibit-

ing adiabatic amplification of collective modes would have
another interesting nonequilibrium property. It would
have not two but three different effective temperatures.
In addition to the lattice temperature Tl and the electron
temperature T, it would also have the collective mode
temperature Tm. The temperature Tm characterizes the
modes created by random thermal fluctuations rather than
those induced by an external probe pulse. In the absence
of damping, Γ ¼ 0, the time evolution of Tm can be
deduced from the principle of entropy conservation in
an adiabatic process. The entropy of an ensemble of
identical harmonic oscillators depends only on the ratio
of temperature and their mode frequency. The damping
introduces an additional factor e−Γt. Therefore, we expect
ðTmðtÞ=Tmð0ÞÞ ≈ ðωqðtÞ=ωqð0ÞÞe−Γt. [Here we assume
that Tm is still much larger than the final equilibrium
temperature Tmðt ¼ ∞Þ ¼ Tl.] When the hot-electron
state is just created, Tm ¼ Tmð0Þ and T ¼ Tð0Þ should
presumably be of the same order. Thereafter, they
would diverge from one another. For example, for graphene
plasmons we find TmðtÞ∼ωqðtÞe−Γt∼ ½TðtÞ�1=2e−Γt. For
graphene energy wave, the same argument yields
TmðtÞ∼ωqðtÞe−Γt∼½TðtÞ�−3=2e−Γt.
In summary, we proposed the concept of adiabatic

amplification of chirped collective modes in nonequili-
brium systems under photoexcitation and suggested two
possible routes for its experimental realization in 2D
materials. Although we focused on systems with hot
electrons, the concept of adiabatic amplification is also
applicable to systems with “cold” electrons, for example,
superconducting films [46,47], where plasmon damping
can be even smaller than in graphene.
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I. CONDUCTIVITY KERNEL

The electric current induced in a system by a weak ex-
ternal field can be derived from the Boltzmann transport
equation. Consider a general 2D system consisting of N
layers. Let f (i)(k, t) be the electron distribution func-
tion of layer i. The total distribution function f(k) is

the sum f(k, t) =
∑N
i=1 f

(i)(k, t). Function f(k) can be
decomposed into partial waves of different angular mo-
menta. When the external electric field is uniform and
the unperturbed Hamiltonian is isotropic, only the s- and
p-waves contribute: f(k) = fs(k) + fp(k). The angle-
independent part fs contains the information about the
nonequlibrum process, e.g., the change of electron tem-
perature T (t) and chemical potential µ(t). The p-wave
part fp determines the total electric current of the sys-
tem. In the linear-response regime fp is a small correction
to fs. The linearized Boltzmann equation has the form

∂tf − eE ∂kf = −γ0[fs − f0(t)]− γ(t)fp , (S1)

where γ0 is the relaxation rate of the s-wave part fs, func-
tion f0(t) is the Fermi-Dirac distribution defined by T (t),
µ(t), and γ(t) is the relaxation rate of the p-wave part
due to disorder, electron-phonon, and electron-electron
scattering. Keeping the leading-order terms in the exter-
nal field, we obtain separate equations for the two partial
waves:

∂tfs = −γ0[fs − f0(t)] , (S2)

∂tfp = eE ∂kfs − γ(t)fp . (S3)

If γ0 is the fastest rate in the problem, the approximate
solutions of these equations are fs = f0(t) and

fp(t) =

t∫
−∞

eE(t0)∂kf0(t0)e−s(t,t0)dt0 , (S4)

where s(t, t0) =
∫ t
t0
γ(t′)dt′ is the accumulated damping

exponent. The current is given by

j(t) = −e
∑
k

v(k, t)fp(k, t) ≡
∞∫
−∞

σ(t, t0)E(t0)dt0 ,

where

σ(t, t0) =
1

π
D(t, t0)θ(t− t0) , (S5)

D(t, t0) = −π
2

∑
k

e2v(k, t)∂kf0(t0)e−s(t,t0), (S6)

v(k, t) = [∂kf0(k, t)]−1
N∑
i=1

v(i)(k)∂kf
(i)
0 (k, t) . (S7)

We define the instantaneous Drude weight D(t0) from
the condition that the current generated at time t0 + 0
by the electric field E(t0) equals 1

πD(t0)E(t0). Combined
with the definition (Eq. (7) of the main text) of κ(t), this
implies

D(t0, t0) = D(t0) = D(0)e−2
∫ t0
0 κ(t′)dt′ . (S8)

Let us first examine a single-layer system, N = 1,
where the average quasiparticle velocity v(k, t) is simply
v(1)(k) and does not change with t. Suppose this sys-
tem is cooling after photoexcitation by emitting acoustic
phonons. A common wisdom is that the phonon emission
is much more effective in relaxing the momentum distri-
bution of the electrons than in cooling them. Indeed, at
T � µ, Pauli blocking of the final electron states is unim-
portant and the typical momentum of an emitted phonon
is of the order of the electron momentum k ∼ T/h̄vF . On
the other hand, the energy of such a phonon Tvph/vF is
much smaller than the typical electron energy T because
the sound velocity vph is much smaller than the Fermi
velocity vF . Accordingly, γ should be significantly larger
than the cooling rate 2κ. It is then sensible to split γ as
follows:

γ = Γ + 2κ . (S9)

We can transform the two-time Drude weight to

D(t, t0) = D(t0)e−s(t,t0)

= D(t0)e
−2

∫ t
t0
κ(t′)dt′−

∫ t
t0

Γ(t′)dt′
.

(S10)

D(t, t0) = D(t)e
−

∫ t
t0

Γ(t′)dt′
, (S11)

which yields Eq. (6) of the main text.
Consider next a multilayer system where electrons can

tunnel between adjacent layers. If the tunneling is the
major mechanism affecting the electron distribution, and
electron momentum k is conserved in tunneling, then it is
more natural to set γ = Γ instead of Eq. (S9). The total
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distribution function f0 =
∑
i f

(i)
0 does not depend on

t0. However, if the effective carrier mass of the layers is
different, the layer-averaged quasiparticle velocity v(k, t)
[Eq. (S7)] changes with t. The result for D(t, t0) can be
written in the form of Eq. (S11).

In theory, there is still another case. When the elec-
tron system is heated due to absorption of photons, its
energy (or temperature) increases while its momentum
remains unchanged. If the situation is possible where
this photoexcitation does not activate other degrees of
freedom (for example, phonons) that cause rapid mo-
mentum relaxation, then we may set γ = Γ, as in the
case of tunneling. However, the two-time Drude weight
D(t, t0) increases with time due to f0(t0), as in the very
first case considered. As a result, we get

D(t, t0) = D(t0)e
−

∫ t
t0

Γ(t′)dt′
, (S12)

in contrast to Eq. (S11).

II. EQUATION OF MOTION FOR PLASMONS

If the system has the spatial translational symmetry,
different momenta are decoupled. For a given q, in the
linear-response regime, the plasmon dynamics is deter-
mined by the electrical conductivity operator σ̂q with the
kernel σq(t, t0), which relates the Fourier components of
the current jq and the electric field Eq:

jq = σ̂qEq ≡
∞∫
−∞

σq(t, t0)Eq(t0)dt0 . (S13)

In turn, the charge density ρq, the electric potential Φq,
and the current jq are related by the Coulomb law and
the continuity equation:

Φq = vqρq , Eq = −iqΦq , ∂tρ = −iq jq , (S14)

where all the quantities are functions of time and

vq = 2π/εq (S15)

is the Fourier transform of the bare Coulomb poten-
tial screened by the dielectric environment. (Note that
screening by the electrons themselves should not be in-
cluded in ε because Eq is the total electric field.) Equa-
tions (S13) and (S14) entail

∂tρq + q2vqσ̂qρq = 0 , (S16)

which is the same as

∂tρq + q2vq

∞∫
−∞

σq(t, t0)ρq(t0)dt0 = 0 . (S17)

With the following model for the conductivity kernel:

σq(t, t0) =
1

π
D(t)e−Γ(t−t0)θ(t− t0) , (S18)

D(t) = D(0)e−2
∫ t
0
κ(t′)dt′ , (S19)

and taking the time derivative of Eq. (S17), and combin-
ing it with Eq. (S18), we get

[
∂2
t + γ(t)∂t + ω2

q (t)
]
ρq = 0 , (S20)

with

γ = 2κ+ Γ , (S21)

which is the result announced in the main text.

III. EQUATION OF MOTION FOR ENERGY
WAVES (DEMONS)

The linearized hydrodynamic equations1–6 (in the no-
tations of Ref. 3) are

∂tn+∇(nu) = −1

e
σQ∇

(
E +

1

e
T ∇µ

T

)
, (S22)

∂tnE +∇jE = 0 , (S23)

∂tjE + v2
F∇P = −env2

FE + η∇2u + ζ∇(∇u), (S24)

where jE ≡ 〈ε(k)v(k)〉 = (nE+P )u is the energy current,
P = 1

2nE is the pressure, η and ζ are the shear and
bulk viscosities, σQ is the conductivity, and the angular
brackets mean the integral of a quantity over electron
momenta k with the weight equal to the shifted Fermi
distribution function f = f0(µ, T, ε−ku). In equilibrium
[u ≡ 0; µ(r, t), T (r, t) = const] the electron concentration
n and energy density nE have the following analytical

FIG. S1. Dispersion of the energy wave (demon) in graphene
at different T calculated from Eqs. (S25), (S26), and (S35).
The red dashed line is the infinite temperature limit, ω =
1√
2
vF q. The electron concentration is n = 2.0 × 1012 cm−2

and the dielectric constant is ε = 1.



3

form

n =

∞∫
−∞

[f0(µ, T, ε)− f0(0, 0, ε)] g(ε)dε

=
2

π

T 2

h̄2v2
F

[π2

6
+

1

2

µ2

T 2
+ 2 Li2

(
−e−µ/T

)]
, (S25)

nE =

∞∫
−∞

[f0(µ, T, ε)− f0(0, 0, ε)] εg(ε)dε

=
2

π

T 3

h̄2v2
F

[π2

3

µ

T
+

1

3

µ3

T 3
− 4 Li3

(
−e−µ/T

)]
. (S26)

In these expression, g(ε) = (2/π)( |ε|/h̄2v2
F ) is the elec-

tron density of states of graphene, Liz(x) is the polylog-
arithm function, and f0(0, 0, ε) = Θ(−ε), where Θ(x) is
the unit step function. For weakly doped graphene (or
for high T ), T � |µ|, one finds

n ' 4 ln 2

π

µT

h̄2v2
F

, (S27)

nE '
6ζ(3)

π

T 3

h̄2v2
F

, (S28)

where ζ(3) = 1.202 is the Riemann zeta-function. Note
that if n is fixed, which is usually the case in the exper-
iment, then Eq. (S25) implicitly defines µ is a function
of T . This function µ = µ(n, T ) can be found by solving
Eq. (S25) numerically or (to the leading order) Eq. (S27)
analytically,

µ ' π

4 ln 2

n

T
h̄2v2

F , (S29)

Having obtained µ, one can use Eq. (S26) to compute the
energy density nE = nE(n, T ) from Eqs. (S26) or (S28).

If the electronic temperature T (t) is uniform but slowly
changing, the linearized equations for the Fourier har-
monics of the concentration, energy density, and drift

velocity become

∂tnq + iqnuq = 0 , (S30)

∂tnEq +
3

2
iqnEuq = 0 , (S31)

iqv2
F

(nEq
2

+ e2nvqnq

)
+

3

2
(nE∂t + ∂tnE)uq = 0 .

(S32)

In these equations we neglected the dissipative terms be-
cause they are quadratic in the small parameter q. Sim-
ilarly, we kept only the leading terms in the adiabatic
changing rate κ. From these equations we can get the
third-order differential equation for nq alone:(

∂3
t + b∂2

t + c∂t
)
nq(t) = 0 , (S33)

b = 2∂t lnnE , c =
2

3
e2v2

F vq
n2q2

nE
. (S34)

Therefore, the instantaneous frequency of the energy
wave (or “demon”) is ωq =

√
c. A more accurate expres-

sion4 is obtained if the next-order in q terms are retained:

ωq = vF

√
1

2
q2 +

4π

3

e2

ε

n2

nE
q , (S35)

which is Eq. (10) of the main text. Formula (S35) pre-
dicts the crossover from

√
q to linear in q behavior, which

was discussed therein. Representative plots of the en-
ergy wave dispersion illustrating its dependence on T are
shown in Fig. S1.

If nE is slowly time-dependent, so are the coefficients
b and c in Eq. (S33). This differential equation can
be solved within the WKB approximation, which yields
Eqs. (10) and (11) of the main text.

Compared with previous work, our results are in full
agreement with those of Ref. 4. An equation similar to
Eq. (S35) is Eq. (43) of Ref. 3, however the coefficient for
the term linear in q differs from that in Eq. (S35) by a
factor of 2π. A collective mode with the acoustic disper-
sion was also discussed in Ref. 7. Although the starting
equations of that work are mathematically equivalent to
our Eqs. (S22)–(S24), the final result for the velocity is

0.6vF instead of vF /
√

2.
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