Lecture 12 Sturm-Liouville problem

1. Definition and examples

2. Self-adjointness

3. Orthogonality, reality, uniqueness

4. Phase formalism

Sturm-Liouville (S-L) problem

1. **Definition**

 Given:

 (1) **Differential operator**

 \[
 \hat{L}u = \left[\frac{d}{dx} p(x) \frac{d}{dx} + q(x) \right] u(x)
 \]

 where \(p(x) > 0 \), \(p'(x) \), \(q(x) \) are real continuous functions on an interval \(a < x < b \)

 (2) **Boundary conditions**

 \(\lambda_0 u(a) + \lambda_1 u'(a) = 0 \), \(\lambda_2 u(b) + \beta_1 u'(b) = 0 \)

 (mixed Dirichlet-Neumann b.c.)

 \(\lambda_i's \), \(\beta_i's \) are real

 Solve: the eigenvalue equation

 \[
 \hat{L}u(x) + \lambda W(x) u(x) = 0 \]

 where \(W(x) \geq 0 \), \(a < x < b \).
1. Harmonic vibrations of a non-uniform elastic spring

\[\frac{d}{dx} \left[k(x) \frac{d}{dx} u(x) \right] + p(x) \omega^2 u(x) = 0 \]

\[\begin{align*}
 k(x) > 0 &= \text{elastic modulus} \\
p(x) &= \text{mass density} \\
\omega &= \text{vibration frequency}
\end{align*} \]

2. One-dimensional heat flow / diffusion

\[c_v(x) \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(x) \frac{\partial T}{\partial x} \right] \]

\[\begin{align*}
 c_v &= \text{specific heat} \\
k &= \text{thermal conductivity}
\end{align*} \]

Look for decaying-in-time solutions \(T(x,t) = u(x) e^{-\lambda t} \)

\[\frac{d}{dx} k(x) \frac{du}{dx} + \lambda c_v(x) u(x) = 0. \]

3. E & M Problems: \(\nabla^2 V = 0, \quad (\nabla^2 + k^2) V = 0 \)

lead to the S-L problems upon separation of variables

(a) Spherical coordinates: \(V = R(r) U(\theta) \cos m \phi \)

Substitution \(x = r \cos \theta \) yields associated Legendre equation

\[\left(1-x^2 \right) u'' - 2x u' + \left[n(n+1) - \frac{n^2}{1-x^2} \right] u(x) = 0 \]

\[\frac{d}{dx} \left(1-x^2 \right) \frac{d}{dx} u, \quad \lambda = q(x) \quad [\text{Arfken}] \quad (8.64) \]

\[(12.71) \]

so \(p = 1-x^2. \)
(b) cylindrical coordinates: separation of variables yields Bessel equation

\[x^2 u'' + xu' + (x^2 - v^2) u = 0 \]

[to be precise, \(v \) = integer in the E&M problem, while \(x = \text{const} \times (\text{radial distance}) \)].

As written, the Bessel eq. is not in the S-L form yet. But if we divide by \(x \), we get

\[xu'' + u' + (x - \frac{v^2}{x}) u = 0 \]

Now rescale the indep. variable \(x = \sqrt{\lambda} \ t \), then

\[\frac{1}{\sqrt{\lambda}} t \frac{d^2 u}{dt^2} + \frac{1}{\sqrt{\lambda}} \frac{du}{dt} + \left(\sqrt{\lambda} t - \frac{1}{\sqrt{\lambda}} \frac{v^2}{t} \right) u(t) = 0 \]

\[\frac{d}{dt} \left(t \frac{du}{dt} \right) + \left(\lambda t - \frac{v^2}{t} \right) u = 0 \]

Question: Consider ODE \(p_0(x) u'' + p_1(x) u'(x) + p_2(x) u = 0 \). Can we bring it to the S-L form \(\hat{L} u(x) + \lambda w(x) u(x) = 0 \)?

A: Yes, by multiplying the general eigenvalue equation \(\hat{L} u + \lambda p(x) u(x) = 0 \) by \(\left[\frac{p(x)}{p_0(x)} \right] \), \(p(x) \equiv \exp \int \frac{p_1(t)}{p_0(t)} \ dt \).

[Arfken, Eq. (9.7)]
Furthermore, as long as \(p(x), w(x) > 0 \), we can reduce the S-L to a Schrodinger eq. by Liouville substitution

\[
\begin{align*}
\xi &= \xi(x) = \int_a^x \sqrt{\frac{w(t)}{p(t)}} \, dt \quad \text{(new indep. variable)} \\
\psi(\xi) &= u(x) \left[p(x) w(x) \right]^{1/4} \quad \text{(new dependent var.)}
\end{align*}
\]

\[
\frac{d^2}{d\xi^2} \psi(\xi) + \left[E - V(\xi) \right] \psi(\xi) = 0,
\]

where

\[
V(\xi) = \frac{9}{w} + (pw)^{-1/4} \frac{d^2}{d\xi^2} (pw)^{1/4}; \quad E = \lambda.
\]

4. The Schrödinger eq. is, of course, in the S-L form.

Conclusion: the S-L is general and ubiquitous in mathematical physics.

Our objective: understand the properties of \(\{ u(x), \lambda \} \).
Quick detour: Scalar product, matrix element

- Scalar product of two functions:

\[
\langle u | v \rangle = \int_a^b u^*(x) v(x) \, dx
\]

Properties:

\[
\langle u | v_1 + v_2 \rangle = \langle u | v_1 \rangle + \langle u | v_2 \rangle
\]

\[
\langle u | \lambda v \rangle = \lambda \langle u | v \rangle
\]

\[
\langle v | u \rangle = \langle u | v \rangle^*
\]

- Matrix element:

\[
\langle u | \hat{L} | v \rangle \equiv \langle u | \hat{L} \hat{v} \rangle = \int_a^b dx \, u^*(x) \hat{L}(x) \hat{v}(x)
\]

Self-adjoint operators:

\[
\langle u | \hat{L} | v \rangle = \langle v | \hat{L} | u \rangle^*
\]

Consider \(\hat{L} = \frac{d}{dx} p(x) \frac{d}{dx} + q(x) \)

\[
\langle u | \hat{L} | u \rangle = \int_a^b dx \, u^*(x) \left[(pu')' + qu(x) \right]
\]

by parts

\[
= p(x) u^*(x) u'(x) \bigg|_a^b + \int_a^b dx \left\{ -pu' \frac{d}{dx} u^* + q u^* u \right\}
\]

again

\[
= p(x) [u^* u' - (u^*)' u] \bigg|_a^b + \int_a^b dx \, u \left[(pu')' + q u^* \right]
\]

\[
= p(x) [u^* u' - (u^*)' u] \bigg|_a^b + \langle u | \hat{L} | u \rangle^*
\]

Example: \(u, v = 0 \) at \(x=0, b \) (Dirichlet) \(\Rightarrow \) \(\langle u | \hat{L} | v \rangle = \langle u | \hat{L} | v \rangle^* \).
Basic properties of self-adjoint (Hermitian) operators:

1) Eigenvalues are real:
\[\hat{L}|u\rangle = \lambda |u\rangle, \quad \lambda \in \mathbb{R} \]

2) Eigenfunctions that belong to \(\lambda_1 \neq \lambda_2 \) are orthogonal
\[\hat{L}|u_1\rangle = \lambda_1 |u_1\rangle, \quad \hat{L}|u_2\rangle = \lambda_2 |u_2\rangle \Rightarrow \langle u_1|u_2\rangle = 0. \]
(2) **Self-adjointness property**

We want to establish more carefully when
\[
\langle u | \hat{L} | u \rangle = \langle u | \hat{L} | u \rangle^* \quad \text{holds.}
\]

This highlights the role of boundary conditions (b.c.)

On the previous page we found:
\[
\langle u | \hat{L} | u \rangle - \langle u | \hat{L} | u \rangle^* = p(x)(u^* u' - u^*' u') \big|_a^b.
\]

Now, \(u^* u' - u^*' u = \det \begin{bmatrix} u^* & u^* \\ u & u' \end{bmatrix} \),

The boundary conditions give
\[
M(x) \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} d_0 u^*(a) + d_1 u^{'*(a)} \\ d_0 u(a) + d_1 u(a) \end{bmatrix} = \begin{bmatrix} (d_0 u + d_1 u')^* \\ d_0 u + d_1 u \end{bmatrix} = [0],
\]

Unless \(d_0 = d_1 = 0 \), we must have \(\det M(x) = 0 \).

Therefore, the boundary term at \(x = a \) vanishes for all allowed \(u, v \) if and only if

(a) \(d_1^2 + d_2^2 > 0 \), \(p(a) \) arbitrary \quad \text{regular S-L problem}

(b) \(d_1 = d_2 = p(a) = 0 \) \quad \text{(singular S-L p.)}

The similar statement holds for \(x = b \) if \(a \to b, \lambda \to \beta \).

Q: Why call \(p(a) = 0 \) case singular?
A: \[
u'' + \frac{p'(x)}{p(x)} u' + \frac{q(x) + \lambda w(x)}{p(x)} u = 0.\]
Orthogonality, uniqueness, reality

We saw that \(\hat{L}u + \lambda w(x)u(x) = 0 \) is equivalent to

\[
\left[\frac{d^2}{dx^2} - V(\xi) \right] \psi(\xi) + \lambda \psi(\xi) = 0
\]

This is Hermitian.

Thus, all \(\lambda \) are real, and for \(\lambda_1 \neq \lambda_2 \)

\[
0 = \langle \psi_1 | \psi_2 \rangle = \int \frac{\psi_1^*(\xi) \psi_2(\xi)}{\sqrt{S(\xi)}} d\xi
\]

\[
= \int_a^b u_1^*(p(x)\frac{1}{4}u_2(p(x)\frac{1}{4}(\frac{w(x)}{p(x)})^{1/2}) dx
\]

\[
= \int_a^b u_1^*u_2(x) w(x) dx = \langle u_1 | u_2 \rangle_w
\]

[Orthogonality with the weight \(w(x) \)].

\(\lambda \)'s are non-degenerate if the SL problem is regular

\((w > 0, p > 0, q \) are well-behaved\)

Proof: since \(\lambda \) is real, Re & Im parts of any
eigenfunction is again an eigenfunction \(\Rightarrow \) can assume they
are always real. For two such functions \(u_1, u_2 \)

\[
\det M(x) = \det \left| \begin{array}{cc} u_1 & u_2 \\ u_1' & u_2' \end{array} \right| = w(x) \quad (\text{Wronskian})
\]

We saw that \(W(\xi) = 0 \).

Abel formula \(W(x) = \frac{\text{Const}}{p(x)} \Rightarrow W(x) = 0 \Rightarrow u_1, u_2 \) are
linearly dependent.
Note: there are also other formulations of the S-L problem, such as those with periodic boundary conditions, e.g.,

\[u(a) = u(b) \]

In such a problem, the degeneracy may and does occur:

\[\frac{d^2 y}{dx^2} + \lambda y = 0 \]

has periodic solutions

\[y(0) = y(2\pi) \] of two kinds,

\[y = \cos mx \quad \text{and} \quad y = \sin mx \]

\((\lambda = m^2) \).
Phase formalism - a convenient approach to analyze
the behavior of \(u(x) \).
We have: \(\frac{d}{dx} p(x) \frac{du}{dx} + Q(x) u = 0 \), \(Q(x) = q(x) + 2 \omega x \).
Consider the Poincaré phase portrait in the phase plane

\[
\begin{align*}
\begin{cases}
 u(x) &= r(x) \sin \Theta(x) \quad \text{"coordinate"} \\
p(x)u'(x) &= r(x) \cos \Theta(x) \quad \text{"momentum"}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
r^2 &= u^2 + p^2 (u')^2 \\
\theta &= \arctan \left[\frac{u}{pu'} \right]
\end{align*}
\]

The transformation to the \((r, \Theta)\) - variables is non-singular
because \(r \neq 0 \) at all \(x \) (otherwise \(u = u' = 0 \Rightarrow u = 0 \)).
The "equations of motion" for \(\Theta \) and \(r \) are:

\[
\begin{align*}
\begin{cases}
\frac{d\Theta}{dx} &= Q(x) \sin^2 \Theta + \frac{1}{p(x)} \cos^2 \Theta \\
\frac{dr}{dx} &= \frac{1}{2} \left[\frac{1}{p(x)} - Q(x) \right] r(x) \sin 2\Theta(x)
\end{cases}
\end{align*}
\]

From (2), \(r(x) = r(a) \exp \left\{ \frac{1}{2} \int_{a}^{x} \left(\frac{1}{p} - Q \right) \sin 2\Theta \, dx \right\} \)
Simple check: if \(p(x) = \frac{1}{Q(x)} = \text{const} \),

\[
\frac{d\theta}{dx} = Q \quad \Rightarrow \quad \theta = \theta_0 + Q \cdot (x-a) \quad r = \text{const}
\]

\[
\Rightarrow \quad u = r \sin \left[Q \cdot (x-a) + \theta_0 \right]
\]

which indeed satisfies

\[
\frac{1}{Q} \frac{d^2 u}{dx^2} + Q \cdot x = 0. \quad \text{(harmonic osc. eq.)}
\]

In general, we expect the phase portrait shown above: the solution oscillates and has zeros, \(u(x) = 0 \), whenever \(\theta = \pi \cdot n \).

Boundary conditions:

\[
\left. \lambda_0 \cdot u + \lambda_1 \cdot u' \right|_a = 0 \quad \Rightarrow \quad \theta(a) = \arctan \left[-\frac{\lambda_1}{\lambda_0} \frac{1}{p(a)} \right], \quad \lambda_0 < 0
\]

\[
\tan \left[\theta(b) \right] = -\frac{\beta_k}{\beta_0} \frac{1}{p(b)} \quad \Rightarrow \quad \theta(b) = \arctan \left[-\frac{\beta_k}{\beta_0} \frac{1}{p(b)} \right] + \pi \cdot n.
\]

\[
\frac{\partial}{\partial \lambda} \left(\frac{d\theta}{dx} \right) = \frac{\partial}{\partial \lambda} Q(x) \cdot \sin^2 \theta = W(x) \sin^2 \theta \geq 0.
\]

Larger \(\lambda \) \Rightarrow steeper growth of \(\theta(x) \).

It can be shown that for large enough \(\lambda \) the solution should exist, in fact, there is \(\infty \)-number of discrete eigenvalues (for \(b-a < \infty \)):

\[
\lambda_0 < \lambda_1 < \lambda_2 < \ldots
\]
Large λ behavior

\[\frac{d\theta}{dx} = \frac{Q(x) \sin^2 \theta}{p(x)} + \frac{1}{p(x)} \cos \theta \]

Expect very rapid growth of $\theta(x) \Rightarrow$ rapid crossings of $\theta = \pi n$ lines, i.e., rapid oscillations. It can be shown that

\[\tan \theta \sim \frac{1}{\sqrt{pQ}} \tan \left[\int_{a}^{x} \sqrt{\frac{Q(t)}{p(t)}} + y \right] , \quad \lambda \to +\infty \]

This is done most conveniently in the Schrödinger representation

\[\left[\frac{d^2}{dx^2} + \lambda - V(x) \right] \psi(x) = 0. \]

At large λ, V can be neglected \Rightarrow

\[\psi(x) \sim C \sin \left(\sqrt{\lambda} x + y \right) , \]

\[U(x) \sim \frac{C}{[p(x)w(x)]^{1/4}} \sin \left(\sqrt{\lambda} \int_{a}^{x} \sqrt{\frac{w(t)}{p(t)}} dt + y \right) . \]

This leads to the Bohr-Sommerfeld quantization condition

\[\sqrt{\lambda} \int_{a}^{b} \sqrt{\frac{w(x)}{p(x)}} dx = 2\pi n + 2(\theta - \theta_0) . \]

If $J < \infty$, then λ's are discrete and $\lambda_n \sim \left(\frac{2\pi}{J} \right)^2 n^2$.\[\lambda_n \to \infty \text{ as } n \to \infty \]
Sturm comparison theorem

Let's return to the dependence of phase \(\theta \) on \(x \) and \(\lambda \).

Let \(x_j, x_{j+1} \) be two consecutive zeros of \(u_i(x) \) (at \(\lambda = \lambda_i \)).

Clearly, this means that \(\theta(x_{j+1}) - \theta(x_j) = \pi \).

For any \(\lambda \geq \lambda_1 \) we then have \(\theta \left| \frac{x_{j+1}^{(i)}}{x_j^{(i)}} \right| > \pi \implies \)

\(u_2(x) \) must cross one of the \(\theta = \pi n \) lines \(\Rightarrow \)

there is a zero of \(u_2(x) \) on the interval \((x_j^{(i)}, x_{j+1}^{(i)})\).

(see Figure).
Variational principle for the eigenvalues

We already proved that the eigenvalues of the S-L problem form the sequence $\lambda_0 < \lambda_1 < \ldots < \lambda_n < \ldots$

$\lambda_n = O(n^2) \Rightarrow \infty, \ n \to \infty.$

There is a general fact that the smallest eigenvalue λ_0 of any Hermitean operator \hat{A} can be found from the variational principle:

$$\lambda_0 = \min \langle u | \hat{A} | u \rangle \text{ subject to the constraint}$$

$$\langle uu \rangle = 1$$

Indeed, for a finite-dim. Hilbert space there is an orthonormal basis of eigenvectors $\{u_0, u_1, u_2, \ldots, u_{n-1}\}$ so that $|u> = \sum_{i=0}^{n-1} c_i |u_i>$$

$$\langle uu \rangle = \sum_i |c_i|^2 = 1,$$

$$\langle uu | \hat{A} | uu \rangle = \sum_i \lambda_i |c_i|^2 > \sum_i \lambda_0 |c_i|^2 = \lambda_0$$

and, of course, $\langle u_0 | \hat{A} | u_0 \rangle = \lambda_0.$
For the S-L problem, \(\frac{d}{dx} p \frac{du}{dx} + q(x) u(x) + \lambda w(x) u = 0 \) (\(\omega \)-dimensional Hilbert space) the variational principle also exists provided \(p(x), w(x) \geq 0 \):

\[
\lambda_0 = \min \langle u | \hat{L} | u \rangle ; \quad \langle uu \rangle_w = \int_a^b u^2(x) w(x) = 1
\]

Note that
\[
\langle u | \hat{L} | u \rangle = \int_a^b u \left[- \left(p u' \right)' - q u \right] dx .
\]

Integrating by parts,
\[
= \int_a^b \left[p(u')^2 - q u^2 \right] dx
\]

Derivation: To handle the constraint, use Lagrange multipliers method; \(\min F \), where \(F \) is the functional

\[
F[u] = \int_a^b \left\{ p(x) \left(\frac{du}{dx} \right)^2 - q(x) u^2(x) - \lambda w(x) u^2 \right\} dx .
\]

According to the variational principle, the extremal function satisfies the Euler-Lagrange equation

\[
\frac{d}{dx} \frac{\delta L}{\delta u'} - \frac{\delta L}{\delta u} = 0 ,
\]

which is the same as our S-L problem. Next, we have

\[
\min \langle u | \hat{L} | u \rangle = - \min \langle u | \hat{L} | u \rangle = \min \langle u | \lambda w u \rangle
\]

\[
= \min \lambda = \lambda_0 .
\]
Variational method for other eigenvalues

(a) In a finite-dimensional Hilbert space

\[\lambda_1 = \min \langle u | \hat{A} | u \rangle \quad \text{under constraints} \]
\[
\begin{align*}
\langle u | u \rangle &= 1 \\
\langle u | u_0 \rangle &= 0 \quad (\text{i.e., } |u\rangle \text{ is orthogonal to } |u_0\rangle)
\end{align*}
\]

Indeed, in this case \[|u\rangle = \sum_{i=0}^{n-1} c_i |u_i\rangle \] and \[c_0 = 0 \]

so that \[\langle u | \hat{H} | u \rangle = \sum_{i=1}^{n-1} \lambda_i |c_i|^2 \geq \lambda_1 \sum_{i=1}^{n-1} |c_i|^2 = \lambda_1 \]

Similarly, for eigenvalue \(\lambda_m \), \(m > 0 \), we must impose constraints

\[\langle u | u_i \rangle = 0 \quad \text{for } i = 0, 1, \ldots, m-1. \]

(b) For the S-L problem it is, by analogy,

\[\lambda_n = \min \langle u | -\hat{L} | u \rangle \]

under constraints

\[\langle u | u \rangle = 1, \quad \langle u | u_i \rangle = 0, \quad i = 0, 1, \ldots, n-1. \]
Equivalent formulation

\[\lambda_n = \min \frac{\langle u_1 - \hat{\lambda_1} u \rangle}{\langle uu \rangle_w} \quad \text{for} \quad u \neq 0 \quad \text{and} \]

the constraints \(\langle u_i u \rangle = 0 \), \(i = 0, 1, \ldots, n-1 \)

This variational principle enables us to prove completeness of the eigenfunction basis:

for any \(u(x) \) that satisfies the boundary conditions, there exist eigenfunction expansion \(u(x) = \sum_{n=0}^{\infty} c_i u_i(x) \), where

\[c_i = \langle u_i \mid u \rangle_w \]

that converges in the \(W \)-norm:

\[\langle \delta_n \mid \delta_n \rangle_w \to 0, \quad n \to \infty \]

Here \(\delta_n = u(x) - \sum_{m=0}^{n-1} c_i u_i(x) \) \((n\text{-th residual}) \).

Proof: \(|\delta_n\rangle \) is orthogonal to all \(|u_i\rangle \), \(i=0, \ldots, n-1 \), and so

\[\frac{\langle \delta_n \mid \hat{\lambda}_1 \mid \delta_n \rangle}{\langle \delta_n \mid \delta_n \rangle_w} = \lambda_n, \quad \text{i.e.}, \quad \langle \delta_n \mid \delta_n \rangle_w < \frac{\langle \delta_n \mid \hat{\lambda}_1 \mid \delta_n \rangle}{\lambda_n} \]

Since \(\lambda_n \to \infty \), \(n \to \infty \) we just need to show that

the numerator is bounded.
This follows from the equality

\[\langle \delta_n \mid \hat{\mathbf{L}} \mid \delta_n \rangle = \sum\limits_{i=0}^{n-1} \lambda_i \mathbf{c}_i^2 \]

and the fact that at sufficiently large \(m \), \(\lambda_n > 0 \).

(proof left for homework)