Neumann Green's function

As discussed at lecture, the Green's theorem applied to $\psi(r)$ – the solution of $\nabla^2 \psi(r) = p(r)$, $r \in V$ and a suitable Green's function $G(r, r_0)$ that satisfies $\nabla_0^2 G(r_0, r) = \delta(r-r_0)$ yields the formula

$$\psi(r) = \int d^3r_0 \ G(r_0, r) \ p(r_0) + \int_S d\mathbf{s}(r_0) \ [\psi(r_0) \ \frac{\partial G(r_0, r)}{\partial n(r_0)} - G(r_0, r) \ \frac{\partial \psi(r_0)}{\partial n(r_0)}] .$$

The Neumann boundary condition are $\frac{\partial \psi(r)}{\partial n} \bigg|_{r \in \partial V} = u_1(r)$. Thus, it is tempting to say that we can choose $\frac{\partial G(r_0, r)}{\partial n} \bigg|_{r \in \partial V} = 0$, in which case ψ is expressed in terms of the known quantities p and u_1:

$$\psi = \int d^3r_0 \ G \ p - \int_S d\mathbf{s} \ G \ u_1 .$$

However, a problem arises if V is finite because $\int_S \frac{\partial G}{\partial n} \ d\mathbf{s} = \int d^3r \ \nabla^2 G = \int d^3r \ \delta(r-r_0) = 1$. So, $\frac{\partial G}{\partial n} = 0$ is not permitted. The simplest permitted boundary condition is $\frac{\partial G(r_0, r)}{\partial n(r_0)} = \frac{1}{A} \ \text{const}$, where $A = \int_S d\mathbf{s}$ is area of S, and $r_0 \in S$, $r \ not \ \in V$. In this case

$$\psi(r) = \int d^3r_0 \ G(r_0, r) \ p(r_0) + C - \int_S d\mathbf{s}(r_0) \ G(r_0, r) \ u_1(r_0) , \ \ C = \frac{\int_S d\mathbf{s} \ \psi}{\int_S d\mathbf{s}} = \langle \psi \rangle = \text{const} .$$

(Thus, the solution is defined up to an arbitrary constant, as could be expected.)

Related issue: $u_1(r)$ must satisfy the self-consistency condition

$$\int_S d\mathbf{s} \ u_1(r) = \int_S d\mathbf{s} \ \frac{\partial u_1}{\partial n} = \int d^3r \ \nabla^2 u_1 = \int d^3r \ p(r) , \ \text{for the solution to exist.}$$

Problem: Solve the 2D Laplace equation $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) \psi(x, y) = 0$ in the circle $r^2 \leq a^2$ subject to the boundary condition $\frac{\partial \psi}{\partial n} = u_1(p)$ at $r = a$. Assume that the self-consistency condition $\int_0^a dp \ u_1(p) = 0$ is satisfied.

Hint: Apply the method of images, $G(r, r_0) = G_0(r, r_0) + 2 \ G_0(r, r_1)$, $G_0(r, r_0) = \frac{1}{2\pi} \ln \frac{|r-r_0|}{|r-r_1|}$ is the free-space Green's function, u_i is arbitrary, G_0 is the image charge to be found, and $r_1 = r_0 \ (a^2/r_0^2)$ is its location (see fig.)
2. The half-space \(z > 0 \) is occupied by a liquid with the sound velocity \(c \). The disk-shaped region \(\sqrt{x^2+y^2} < a \) of the surface is made to undergo oscillations of small velocity \(\vec{v} = v_x \hat{x} \) \(e^{-i\omega t} \). The remainder of the surface is kept at zero normal velocity, \(v_z = 0 \). Assume that the flow is irrotational, i.e., that there exists \(\psi(\vec{r}) \) such that \(\vec{v}(\vec{r}) = \nabla \psi \). The potential function \(\psi \) satisfies the usual wave equation in the bulk:

\[
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \psi(\vec{r}, t) = 0.
\]

(a) Find the suitable Green's function by method of images and express \(\psi(\vec{r}, t) \) in the form of a definite integral.

(b) Show that \(\psi(x = y = 0, z, t) \sim \frac{1}{2} \frac{\omega a^2}{c} e^{i k z - i \omega t} \) at \(z \to a \).

3. A wire of radius \(b \) is immersed in an oil bath of infinite volume. The heat diffusion coefficient of both oil and the wire is equal to \(D \). Both are originally at temperature \(T_0 \). The wire is instantaneously heated up to temperature \(T_1 > T_0 \) by a current pulse. Show that the temperature a distance \(r \) from the wire axis at a time \(t \) is

\[
T = T_0 + \frac{T_1 - T_0}{2D} e^{-r^2/4Dt} \int_0^{2\pi} \int_0^b e^{-p^2/4Dt} I_0\left(\frac{rp}{2Dt} \right) \, dp \, d\theta,
\]

where \(I_0(z) = \int_0^{2\pi} \frac{1}{2\pi} \exp(iz\cos \theta) \, d\theta \) is the modified Bessel function.

Additionally, find the leading-order behavior of \(\Delta T(r) = T(r) - T_0 \) at short times, \(t \ll \frac{rb}{D} \) and large distances \(r \gg b \). Use the asymptotic formula \(I_0(z) \sim \frac{1}{\sqrt{2\pi z}} e^{z} \), valid for \(z > 0, z \gg 1 \).