1. (a) Derive a formula for the charge density profile induced around a point charge Q in a metal. Use the Thomas-Fermi approximation and assume the Thomas-Fermi screening radius R_{TF} is density-independent. What is the problem with this approach at small distances near the point charge? Do the derivation both in SI and CGS.

(b) Same question for a planar sheet of charge of axial density g inside of a bulk metal.

2. Einstein-Stokes relation: A spherical Brownian particle of radius R executes a random motion with the diffusion coefficient D in a liquid at temperature T. Find the viscosity η of a liquid using the arguments similar to those in the derivation of Einstein's relation for electrical conductivity.

Hints: (1) The force of a viscous friction acting on a particle moving with velocity V is given by a Stokes formula $F = 6\pi R \eta V$.

2. In an ensemble of Brownian particles, the relation between their concentration N and chemical potential μ is given by the Boltzmann statistics $N = Ne^{\beta \mu}$ (N is some T-dependent parameter).

3. Consider the dynamical equilibrium of such an ensemble in a gravity field. Collisions of electrons with impurities and phonons cause a finite lifetime of plasmon excitations in metals and semiconductors. As a result, oscillations of the electron density $\delta n(t)$ tend to decay in time according to the law $\delta n(t) \propto e^{-t/\tau_p} e^{-i\omega_p t}$ + c.c. Derive a formula for τ_p, ω_p in terms of the conductivity σ and relaxation time τ. Estimate τ_p and ω_p for Cu ($\sigma \sim 10^6 \Omega^{-1} cm^{-1}, \tau \sim 10^{-14}s$) and some dirty semiconductor ($\sigma \sim 10^1 \Omega^{-1} cm^{-1}, \tau$ the same).

Hint: $\frac{1}{\tau_p}$ and ω_p are the imaginary and the real parts of the complex solution ω of the plasmon defining equation $\varepsilon(\omega) = 0$.