1. Consider a semiconductor with the intrinsic carrier concentration \(N_i \). Derive a formula for the Thomas-Fermi screening radius \(R_{TF} \) at a given temperature \(T \). Hint: consider the equilibrium state in the presence of an external potential \(\phi(r) \), write down expressions for the electron and hole densities as a function of \(r \), the Gauss law, and collect terms linear in \(\phi \). Don't forget the dielectric constant \(K \).

2. Estimate \(R_{TF} \) for Ge, \(N_i = 2.4 \times 10^{13} \text{cm}^{-3} \), \(T = 300 \text{K} \), \(K = 16.2 \).

3. Do the same for Ge doped with \(N_D = 10^{17} \text{cm}^{-3} \) donor impurities.

4. An experimentally measured conductivity of some metal was fitted to a Lorentzian: \(\text{Re} \sigma(\omega) = \sigma(0)/(1 + \omega^2/\omega_0^2) \) with parameters \(\sigma(0) = 10^5 \Omega^{-1} \text{cm}^{-1} \), \(\hbar \omega_0 = 10 \text{meV} \). Estimate the carrier concentration and the plasma frequency (in Hz). Note that \(1 \text{s}^{-1} = \frac{1}{2\pi} \text{Hz} \).

5. A number of insulating crystals strongly reflect incident radiation in a fairly narrow range of wavelengths, \(\lambda_1 < \lambda < \lambda_2 \). Explain this effect appealing to the diagram of collective excitations in such a material. Find the \(\lambda_2/\lambda_1 \) ratio for ZnTe based on its static dielectric constant \(K = 9.86 \) and the refraction index \(N = 2.70 \).

6. Derive the functional dependence of the magnetization \(\mu \) of a ferromagnet on a weak external magnetic field \(H \) above and at the transition temperature based on the Landau theory of phase trans. Introduce your own notations for the requisite phenomenological coefficients.

7. Calculate the supercurrent density \(\mathbf{j} \) at the surface of a long superconducting cylinder of radius \(R = 1 \text{mm} \) subject to a uniform magnetic field \(H = 1000 \text{G} \) parallel to its axis. London penetration length \(\xi \) is \(\xi = 2 \text{µm} \). Give the answer both in CGS and A/m² units.